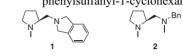
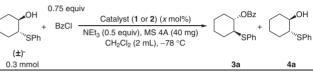
Efficient and Enantioselective Kinetic Resolution of Cyclic β -Hydroxy Sulfides by Chiral 1,2-Diamine Catalyzed Asymmetric Acylation

Yoshiyuki Kawamata and Takeshi Oriyama*

Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512

(Received January 25, 2010; CL-100074; E-mail: tor@mx.ibaraki.ac.jp)


Kinetic resolution of cyclic β -hydroxy sulfides has been achieved by reaction with benzoyl chloride in the presence of a catalytic amount (0.1 mol%) of a chiral 1,2-diamine combined with triethylamine. This reaction affords the corresponding benzoates and unreacted alcohols with excellent enantioselectivities.


Optically active β -hydroxy sulfides are known to be versatile synthetic intermediates in organic synthesis.¹ For example, they can be converted to useful ligands for asymmetric synthesis.² They can generally be obtained by asymmetric ring-opening of *meso*-epoxides with thiols³ or asymmetric reduction of β -keto sulfides.⁴ Only a few reports describe the preparation of cyclic β -hydroxy sulfides with high enantioselectivities. In 1997, Shibasaki and co-workers developed a gallium–lithium–bis(binaphthoxide) complex, which is presently the most enantioselective catalyst (up to 98% ee) available for the asymmetric ring-opening reaction of cyclic *meso*-epoxides with thiols.⁵ However, the nucleophile is limited to *t*-BuSH.

Kinetic resolution of β -hydroxy sulfides by asymmetric acylation is another prominent protocol for obtaining optically active β -hydroxy sulfide derivatives. However, only enzymatic methods for this purpose have been demonstrated.⁶ We have developed highly enantioselective non-enzymatic methods for the organocatalytic asymmetric acylation of a variety of racemic alcohols⁷ and *meso*-diols.⁸ The reaction of alcohols with benzoyl chloride as an achiral acylating agent in the presence of a catalytic amount (0.3–0.5 mol %) of a chiral 1,2-diamine derived from (*S*)-proline produced excellent enantioselectivities. Overall, chiral 1,2-diamines having an isoindoline (1) or a benzylmethylamino group (2) were the most promising organocatalysts for the asymmetric acylation of various alcohols.

Herein, we report a kinetic resolution of cyclic β -hydroxy sulfides by highly efficient organocatalytic asymmetric acylation.

First, we attempted the reaction of racemic trans-2-phenylsulfanyl-1-cyclohexanol (0.3 mmol) as a model substrate with 0.75 equiv of benzoyl chloride in the presence of 0.3 mol% of chiral diamine 1 combined with 0.5 equiv of triethylamine and 40 mg of molecular sieves (MS) $4A^9$ in dichloromethane at -78 °C. After stirring for 5 h, the reaction catalyzed by chiral diamine 1 afforded the corresponding benzoate, (+)-trans-1benzoyloxy-2-phenylsulfanylcyclohexane (3a), in 49% yield with 97% ee and unreacted alcohol, (-)-trans-2-phenylsulfanyl-1-cyclohexanol (4a), in 47% yield with 99% ee (Table 1, Run 1). Chiral diamine 2 also catalyzed the acylation with excellent enantioselectivities. However the acylation proceeded slowly to give benzoate 3a in lower yield in 24h (Table 1, Run 2). When the chiral diamine 1 content was decreased to 0.1 mol % from 0.3 mol %, asymmetric acylation gave the benzoate **3a** in 49% yield with 98% ee (s = 360) in 12 h
 Table 1. Catalytic asymmetric acylation of racemic trans-2phenylsulfanyl-1-cyclohexanol

Run	Catalyst $(x/mol \%)$	Time /h	3a		4a		
			Yield /% ^a	ee /% ^b	Yield /% ^a	ee /% ^{c,d}	s ^e
1	1 (0.3)	5	49	97	47	99	220
2	2 (0.3)	24	19	96	78	22	60
3	1 (0.1)	12	49	98	47	97	360
4^{f}	1 (0.1)	12	50	97	49	96	300
5 ^g	1 (0.1)	12	44	98	51	85	290
6 ^h	1 (0.1)	24	15	99	82	16	170

^aIsolated yields. ^bDetermined by HPLC analysis using a Daicel Chiralpak AD-H column. ^cDetermined by HPLC analysis using a Daicel Chiralcel OD column. ^dAbsolute configuration was determined by the comparison of optical rotation of **4a** (Ref. 3a). ^eCalculated from the conversion (isolated yield) and ee of the acylated product (Ref. 10). ^f30 mg of MS 4A were used. ^g20 mg of MS 4A were used. ^hWithout MS 4A.

(Table 1, Run 3). Decreasing MS 4A from 40 mg to 30 mg also resulted in a similar yield of the benzoate **3a** with similar enantioselectivity (s = 300) (Table 1, Run 4). As a result, the optimal reaction conditions involved β -hydroxy sulfides (0.3 mmol) with benzoyl chloride (0.75 equiv) in the presence of chiral diamine **1** (0.1 mol%) combined with triethylamine (0.5 equiv) and MS 4A (30 mg) in dichloromethane (2 mL) at -78 °C.

Table 2 summarizes the successful results of the substrate scope of this reaction.¹¹ The asymmetric acylation of sixmembered cyclic β -hydroxy sulfides afforded the corresponding benzoates **3** and unreacted alcohols **4** with high to excellent enantioselectivities except for the unreacted alcohol of Run 6 (Runs 1–6, 10, and 11). The five-membered cyclic β -hydroxy sulfide was acylated with moderate enantioselectivity (Run 7). The asymmetric synthesis of seven- and eight-membered cyclic β -hydroxy sulfides with excellent enantioselectivities is difficult; however, the asymmetric acylation of seven- and eight-membered cyclic β -hydroxy sulfides proceeded smoothly with excellent enantioselectivities (Runs 8 and 9).

In conclusion, we have succeeded in developing the first non-enzymatic method for the asymmetric acylation of β -

	0.75 ec (()n + BzC	NEt ₃ (0.5	5 equiv), MS 4A (30 H ₂ Cl ₂ (2 mL), -78 °C	mg) (()n	SR + ()n	OH '''SR	
	(±)- 0.3 mmol				3	4	
Run	Substrate	Time/h	3		4		s ^d
Kuii			Yield/% ^a	ee/% ^b	Yield/% ^a	ee/% ^c	S
1	OH	12	50	97	49	96 ^e	280
2	OH ^{wy} S-4-MeC ₆ H ₄	13	49	96	47	97 ^e	160
3	OH S-4-CIC ₆ H ₄	13	49	98 ^f	49	94 ^{e,g}	360
4	OH ""SBn	12	49	96	48	99 ^e	160
5	OH ""S- <i>n</i> -Bu	12	46	92	43	93 ^{e,g}	57
6	OH ""S-t-Bu	48 ^h	42	98	44	73 ^{e,g}	210
7	OH ""SPh	12	48	68 ⁱ	48	69 ^e	10
8	OH	5 ^j	48	97	47	97	200
9	OH ""SPh	5 ^j	49	95 ⁱ	48	99 ^e	160
10	OH ""SPh	16	50	94	47	93	120
11	OH ""SPh	3 ^j	49	86	49	81 ^e	34

Table 2. Catalytic asymmetric acylation of various racemic cyclic β -hydroxy sulfides

0.1 mol%

^aIsolated yields. ^bUnless otherwise mentioned, determined by HPLC analysis using a Daicel Chiralpak AD-H column. ^cDetermined by HPLC analysis using a Daicel Chiralcel OD column. ^dCalculated from the conversion (isolated yield) and ee of the acylated product (Ref. 10). ^eAbsolute configurations were determined by the comparison of optical rotations of **4** (Refs. 3a, 3h, and 5). ^fDetermined by HPLC analysis using a Daicel Chiralcel OJ-H column. ^gDetermined by HPLC analysis using a chiral column after conversion to the corresponding benzoate. ^h3 mol % of the chiral diamine was used. ⁱDetermined by HPLC analysis using a chiral column after conversion to the corresponding alcohol. ^j0.5 mol % of the chiral diamine was used.

hydroxy sulfides catalyzed by a chiral 1,2-diamine derived from (S)-proline. This reaction has striking advantages such as high efficiency, excellent enantioselectivities, and very low catalyst loadings (0.1 mol %). Additionally this reaction is very attractive from the standpoint of green chemistry; the organocatalytic reaction does not require metallic compounds. Further investigations to broaden the scope and synthetic applications of asymmetric acylation are under way.

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References and Notes

- a) A. B. Bueno, M. C. Carreño, J. L. G. Ruano, C. Hamdouchi, *Tetrahedron: Asymmetry* 1995, *6*, 1237. b) L. D. Nunno, C. Franchini, A. Nacci, A. Scilimati, M. S. Sinicropi, *Tetrahedron: Asymmetry* 1999, *10*, 1913.
- 2 a) J. Spencer, V. Gramlich, R. Häusel, A. Togni, *Tetrahedron: Asymmetry* 1996, 7, 41. b) D. A. Evans, K. R. Campos, J. S. Tedrow, F. E. Michael, M. R. Gagné, *J. Am. Chem. Soc.* 2000, *122*, 7905.
- 3 a) H. Yamashita, T. Mukaiyama, *Chem. Lett.* 1985, 1643.
 b) M. H. Wu, E. N. Jacobsen, *J. Org. Chem.* 1998, 63, 5252.
 c) J. Wu, X.-L. Hou, L.-X. Dai, L.-J. Xia, M.-H. Tang, *Tetrahedron: Asymmetry* 1998, 9, 3431. d) M. Boudou, C. Ogawa, S. Kobayashi, *Adv. Synth. Catal.* 2006, 348, 2585.
 e) M. V. Nandakumar, A. Tschöp, H. Krautscheid, C. Schneider, *Chem. Commun.* 2007, 2756. f) C. Ogawa, N. Wang, S. Kobayashi, *Chem. Lett.* 2007, 36, 34. g) Y.-J. Chen, C. Chen, *Tetrahedron: Asymmetry* 2007, 18, 1313. h) J. Sun, M. Yang, F. Yuan, X. Jia, X. Yang, Y. Pan, C. Zhu, *Adv. Synth. Catal.* 2009, 351, 920. i) J. Sun, F. Yuan, M. Yang, Y. Pan, C. Zhu, *Tetrahedron Lett.* 2009, 50, 548.
- 4 a) B. T. Cho, O. K. Choi, D. J. Kim, *Tetrahedron:* Asymmetry 2002, 13, 697. b) B. T. Cho, D. J. Kim, *Tetrahedron* 2003, 59, 2457. c) B. T. Cho, S. H. Shin, *Tetrahedron* 2005, 61, 6959.
- 5 T. Iida, N. Yamamoto, H. Sasai, M. Shibasaki, J. Am. Chem.

Soc. 1997, 119, 4783.

- 6 a) U. Goergens, M. P. Schneider, J. Chem. Soc., Chem. Commun. 1991, 1064. b) S. Singh, S. Kumar, S. S. Chimni, Tetrahedron: Asymmetry 2001, 12, 2457. c) S. S. Chimni, S. Singh, S. Kumar, S. Mahajan, Tetrahedron: Asymmetry 2002, 13, 511. d) M. Wielechowska, J. Plenkiewicz, Tetrahedron: Asymmetry 2003, 14, 3203.
- 7 a) T. Oriyama, Y. Hori, K. Imai, R. Sasaki, *Tetrahedron Lett.* 1996, 37, 8543. b) T. Sano, K. Imai, K. Ohashi, T. Oriyama, *Chem. Lett.* 1999, 265. c) T. Sano, H. Miyata, T. Oriyama, *Enantiomer* 2000, 5, 119. d) D. Terakado, H. Koutaka, T. Oriyama, *Tetrahedron: Asymmetry* 2005, 16, 1157.
- 8 a) T. Oriyama, K. Imai, T. Hosoya, T. Sano, *Tetrahedron Lett.* 1998, *39*, 397. b) T. Oriyama, K. Imai, T. Sano, T. Hosoya, *Tetrahedron Lett.* 1998, *39*, 3529. c) T. Oriyama, T. Hosoya, T. Sano, *Heterocycles* 2000, *52*, 1065. d) T. Oriyama, H. Taguchi, D. Terakado, T. Sano, *Chem. Lett.* 2002, 26.
- 9 Powdered MS 4A (purchased from Wako Chemical Co., Inc.) was dried at 120 °C for 8 h under reduced pressure before use.
- 10 C.-S. Chen, Y. Fujimoto, G. Girdaukas, C. J. Sih, J. Am. Chem. Soc. 1982, 104, 7294.
- 11 Typical experimental procedure is as follows: Triethylamine (21 µL, 0.15 mmol) was added to a mixture of (S)-1-methyl-2-[(dihydroisoindole-2-yl)methyl]pyrrolidine (1) (0.065 mg, 0.30 µmol) and racemic trans-2-phenylsulfanyl-1-cyclohexanol (62.5 mg, 0.30 mmol) in CH₂Cl₂ (2 mL) in the presence of MS 4A (30 mg) at room temperature. Benzovl chloride $(26\,\mu\text{L}, 0.22\,\text{mmol})$ was added at $-78\,^\circ\text{C}$. After stirring for 12 h at -78 °C, the reaction mixture was quenched with a phosphate buffer (pH 7) and the organic materials were extracted with EtOAc. The combined extracts were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude products were purified by thin-layer chromatography on silica gel to give (+)-trans-1-benzoyloxy-2-phenylsulfanylcyclohexane (46.9 mg, 50% yield with 97% ee) and (-)-trans-2-phenylsulfanyl-1-cyclohexanol (30.6 mg, 49% yield with 96% ee).